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scenario (MaVaNs). Recently, it was argued that the MaVaNs has a catastrophic instability

which is the emergence of an imaginary speed of sound at the non-relativistic limit of

neutrinos. As the result of this instability, the neutrino-acceleron fluid cannot act as

the dark energy. However, it is found that the speed of sound squared in the neutrino-

acceleron fluid could be positive in our model. We examine the speed of sound in two cases

of the scalar potential. One is the small fractional power-law potential and another is the

logarithmic one. The power-law potential model with the right-handed neutrinos gives a

stable one.
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1. Introduction

One of the most challenging questions in both cosmological and particle physics is the

nature of the dark energy in the Universe. At the present epoch, the energy density of the

Universe is dominated by a dark energy component, whose negative pressure causes the

expansion of the Universe to accelerate. In order to clarify the origin of the dark energy,

one has tried to understand the connection of the dark energy with particle physics.

In a scenario proposed by Fardon, Nelson and Winer (MaVaNs), relic neutrinos could

form a negative pressure fluid and cause cosmic acceleration [1]. In this idea, an unknown

scalar field which is called “acceleron” is introduced and neutrinos interact through a

new scalar force. The acceleron field sits at the instantaneous minimum of its potential,

and the cosmic expansion only modulates this minimum through changes in the neutrino

density. Therefore the neutrino mass is given by the acceleron, in other words, it depends

on its number density and changes with the evolution of the Universe. The cosmological

parameter w and the dark energy also evolve with the neutrino mass. Those evolutions

depend on a model of the scalar potential strongly. Typical examples of the potential have

been discussed by Peccei [2].

The variable neutrino mass was considered at first in [3], and was discussed for neutrino

clouds [4]. Ref. [5] considered coupling of the dark energy scalar, such as Quintessence to
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the neutrinos and discuss its impact on the neutrino mass limits from Baryogenesis. The

MaVaNs scenario leads to interesting phenomenological results. The neutrino oscillations

may be a probe of the dark energy [6 – 8]. The leptogenesis [9, 10], the cosmo MSW

effect of neutrinos [11] and the solar neutrino [12, 13] have been studied in the context of

this scenario. Cosmological discussions of the scenario are also presented [14 – 20]. The

extension to the supersymmetry have been presented in ref. [21, 22]. This scenario is also

discussed in the context of the texture of the neutrino mass matrix with three families [23].

Despite many implications of this scenario, ref. [24] showed that this scenario contains a

catastrophic instability which occurs when neutrinos become non-relativistic. As neutrinos

become non-relativistic, the speed of sound squared in the neutrino-acceleron fluid turns

to be negative. As the result of this instability, neutrinos condense into neutrino nuggets,

and thus cannot act as the dark energy.1 However, we have found that the speed of sound

squared in this fluid could be positive even though neutrinos are not enough relativistic

and the neutrino-acceleron fluid is adiabatic. In order to realize the positive speed of sound

squared, a constraint for the scalar potential is required.

The paper is organized as follows: in section 2, we summarize the MaVaNs scenario

with three families. Section 3 presents discussions for the speed of sound in the hydro-

dynamic picture. Section 4 presents a stable model in the MaVaNs scenario. Section 5

devotes to the summary.

2. Dark energy from MaVaNs

In the MaVaNs scenario, one considers a dark energy sector consisting an “acceleron” field,

φa and a dark fermion, ψn. This sector couples to the standard model sector only through

neutrinos. The dark energy is assumed to be the sum of the energy densities of neutrinos

and a scalar potential for the acceleron:

ρDE = ρν + V (φa), (2.1)

where the potential energy of the acceleron is responsible for the acceleration of the Universe

and for the dynamical neutrino mass. The energy density for three generations of neutrinos

and antineutrinos is generally given by

ρν = T 4
3

∑

i=1

F (ξi), ξi ≡
mνi

T
, F (ξi) ≡

1

π2

∫ ∞

0

dyy2
√

y2 + ξ2
i

ey + 1
, (2.2)

where i denotes three families.2

1Fardon, Nelson and Winer avoid this instability by identifying the lightest of the three neutrinos with

the one responsible for the dark energy [22]. Some non-adiabatic models [14, 15] do not also suffer from

this instability.
2In ref. [1, 2], there is a more precise discussion about the Fermi factor in eq. (2.2). For our purpose it

suffices to use this form.
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In the scenario, ρDE is stationary with respect to variation in the neutrino mass. This

stationary condition is represented by

∂ρν

∂
∑3

i=1 mνi

+
∂V (φa(mνi))

∂
∑3

i=1 mνi

= 0. (2.3)

If ∂
∑

mνi/∂φa 6= 0, this condition turns to

T 4
3

∑

i=1

∂F

∂ξi

∂ξi

∂φa
+

∂V (φa)

∂φa
= 0. (2.4)

Using the equation of energy conservation in the Robertson-Walker background and the

above stationary condition, one can get the equation of state parameter w as follows:

w + 1 =
[4 − h(T )] ρν

3ρDE
, (2.5)

where

h(T ) ≡

∑3
i=1 ξi

∂F (ξi)
∂ξi

∑3
j=1 F (ξj)

. (2.6)

The speed of sound squared in the neutrino-acceleron fluid is given by

c2
s =

ṗ

ρ̇DE
=

ẇρDE + wρ̇DE

ρ̇DE
(2.7)

where p is the pressure of the dark energy [24, 25]. Recently, it was argued that when

neutrinos are non-relativistic, this speed of sound squared becomes negative in this scenario:

c2
s = (∂ lnmν/∂ ln nν) < 0, where nν is the number density of neutrinos. The emergence

of an imaginary speed of sound shows that the MaVaNs scenario with non-relativistic

neutrinos is unstable, and thus the fluid in the scenario cannot act as the dark energy.

However, it is found that the speed of sound squared in this fluid can be positive even

though neutrinos are non-relativistic. Then, a constraint for the scalar potential is required.

3. Speed of sound

At the non-relativistic limit of neutrinos, the energy density of neutrinos is given by

ρν =
3

∑

i=1

mνinν, (3.1)

then the stationary condition eq. (2.3) is rewritten as follows:

nν = −
∂V (φa)

∂
∑3

i=1 mνi

. (3.2)

Now the dark energy density is given as

ρDE =
3

∑

i=1

mνinν + V (φa). (3.3)
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Using these relations, the speed of sound squared in the neutrino-acceleron fluid is negative:

c2
s = (∂ ln mν/∂ ln nν) < 0 as shown in ref. [24]. In order to study c2

s quantitatively, we

start with discussing the energy density of neutrinos in eq. (2.2). Taking account that ξi is

much larger than 1 for non-relativistic neutrinos, the function F (ξi) is expanded in terms

of ξ−1
i as:

F (ξi) '
n̂ν

T 3
ξi + a

n̂ν

T 3

1

ξi
, (3.4)

where

n̂ν ≡
T 3

π2

∫ ∞

0

dyy2

ey + 1
, a ≡

∫ ∞

0
dyy4

ey+1

2
∫ ∞

0
dyy2

ey+1

' 6.47. (3.5)

Since the first term of the right hand side in eq. (3.3) is derived from the first term of the

right hand side in eq. (3.4), the effect of the second term in eq. (3.4) should be added to the

dark energy density as a correction. Due to this correction, it could be that the negative

speed of sound squared turns to be positive under a condition, which is discussed in detail

later.

The dark energy density including the correction term is given as follows:

ρDE =

3
∑

i=1

mνin̂ν

(

1 +
a

ξ2
i

)

+ V (φa). (3.6)

Then the stationary condition eq. (2.4) is described as

T
3

∑

i=1

(

n̂ν −
an̂ν

ξ2
i

)

∂ξi

∂φa
+

∂V (φa)

∂φa
= 0. (3.7)

The equation of state is generally given by eq. (2.5). At the non-relativistic limit, it is easy

to see h(T ) = 1. Because of the correction term, h(T ) is deviated from 1 as follows:

h(T ) ≡
T 4

∑3
i=1 ξi

∂F (ξi)
∂ξi

∑3
j=1 F (ξj)

=
1 − 1

P

3

i=1
ξi

(

∑3
j=1

a
ξj

)

1 − 1
P

3

k=1
ξk

(

∑3
l=1

a
ξl

) ' 1 −
2

∑3
i=1 ξi





3
∑

j=1

a

ξj



 . (3.8)

Thus, the equation of state is given by

w + 1 =
n̂ν

∑3
i=1

(

3mνi + 5aT
ξi

)

3ρDE
(3.9)

where we omitted the term of O(1/ξ3). Using eqs. (3.6) and (3.9) and the stationary

condition eq. (2.3), the speed of sound squared in the neutrino-acceleron fluid is described

finally as follows (see appendix):

c2
s =

ẇρDE + wρ̇DE

ρ̇DE
=

∂w
∂z

ρDE + w
∂ρDE

∂z
∂ρDE

∂z

=

∑3
i=1

∂mνi

∂z
n̂ν

∑3
i=1 mνi

∂n̂ν

∂z

+

5
3an̂ν

∑3
i=1

(

5T0

ξi
− T

ξ2

i

∂mνi

∂z

)

∑3
i=1 mνi

∂n̂ν

∂z

, (3.10)
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where z is the redshift parameter, z ≡ (T/T0)−1 and “0” represents a value at the present

epoch. We have taken the form differentiated by the redshift parameter instead of the time.

The first term in the right hand side of eq. (3.10) is the leading term at the non-relativistic

limit and is negative definite because of ∂mνi/∂z < 0 and ∂n̂ν/∂z > 0. The numerator of

the second term, which is the correction term, is the positive definite. Thus, it is possible

that the speed of sound squared is positive, in other words, the neutrino-acceleron fluid

could be stable due to this term. From the eq. (3.10), it is easy to see that if the following

relation is satisfied, the speed of sound squared becomes positive:

3
∑

i=1

∂mνi

∂z

(

1 −
5aT 2

3m2
νi

)

+
25aT 2

0 (z + 1)

3

3
∑

i=1

1

mνi
> 0. (3.11)

The sign of c2
s is determined by the magnitude of ∂mνi/∂z. Since the magnitude of ∂mνi/∂z

is model dependent, we will examine two cases of the scalar potential for the acceleron,

one is the power-law potential and another is the logarithmic one in the next section.

4. Models

In the MaVaNs scenario, one needs a flat scalar potential [1]. Therefore, we will discuss the

speed of sound in cases of the small fractional power-law potential and logarithmic one in

this section. The magnitude of ∂mνi/∂z does not only depend on the scalar potential but

also the coupling between neutrinos and the acceleron. Therefore, we consider two cases

in eqs. (4.2) and (4.10) for this coupling.

4.1 The power-law potential

We take the small fractional power-law potential of the form

V (φa) = A

(

φa

φ0
a

)k

, k ¿ 1, (4.1)

where parameters A and k are fixed by the magnitude of the dark energy and the stationary

condition at the present epoch, respectively.

4.1.1 Three left-handed neutrinos and a sterile neutrino

We take a Lagrangian of the form

L = ν̄Lαmα
Dψn + λφaψnψn + h.c. , (4.2)

where νL and ψn are the left-handed and a sterile neutrino, respectively. Since we consider

three families of active neutrinos, the mass matrix mD is 3 × 1 matrix. Thus the neutrino

mass matrix is given by

Mν =
mDmT

D

λφa
, (4.3)

where we assume mα
D ¿ λφa. After diagonarizing this matrix, we can find mass eigenvalues

of neutrinos as follows:

mνi =
M2

i

λφa
, (4.4)
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which gives

ξi =
M2

i

λφaT
. (4.5)

Using eqs. (2.1), (4.1) and (4.5), we have the redshift dependence of the acceleron from the

stationary condition eq. (2.4) as

φa '
−Ak + G(z)

2λan̂νT 2
∑3

l=1(1/M
2
l )

, G(z) ≡

√

√

√

√A2k2 + 4an̂2
νT

2

3
∑

j=1

(1/M2
j )

3
∑

k=1

M2
k , (4.6)

where the leading term is taken after expanding ∂V/∂φa by k. Thus, the redshift depen-

dence of neutrino masses is given by

3
∑

i=1

∂mνi

∂z
= −

3
∑

i=1

M2
i

λφ2
a

∂φa

∂z
(4.7)

= −
4a2n̂2

νT
4
[

∑3
l=1(1/M

2
l )

]2
∑3

i=1 M2
i

(z + 1)[−Ak + G(z)]2

[

8n̂ν

∑3
l=1 M2

l

G(z)
−

5[−Ak + G(z)]

2an̂νT 2
∑3

l=1(1/M
2
l )

]

,

where the right hand side is negative and its absolute value is the increasing function of k.

At the present epoch, values of some parameters are given by

T0 ' 1.69 × 10−4(eV), A ' 2.99 × 10−11(eV4), n̂0
ν ' 8.82 × 10−13(eV3), (4.8)

and we take the following typical masses at the present epoch:

m0
ν1 = 0.0045(eV), m0

ν2 = 0.01(eV), m0
ν3 = 0.05(eV), (4.9)

which lead to ∆m2
atm = 2.4 × 10−3(eV2) and ∆m2

sun = 8.0 × 10−5(eV2). We numerically

evaluate the relation (3.11) by putting values of (4.8) and (4.9). We find that k has to be

smaller than 5.5× 10−5 to satisfy the relation (3.11). However this value of k is unfavored

in the phenomenology of the neutrino experiments. The value of k is related with neutrino

masses through the stationary condition eq. (3.7). Actually, the k which is smaller than

5.5 × 10−5 leads to
∑

mνi ∼ O(10−4)(eV). In the case of 10−4 < k < 10−2,
∑

mνi ∼

O(10−3 ∼ 10−1)(eV) is expected. Therefore, this model including the relation (4.4) and

the scalar potential (4.1) is unfavored.

4.1.2 Three left- and right-handed neutrinos and a sterile neutrino

We add usual right-handed neutrinos to the Lagrangian (4.2)

L = ν̄Lαmα
Dψn + λφaψnψn + ν̄LαMαβ

D νRβ + νT
RαMαβ

R C−1νRβ + h.c. , (4.10)

where νR is the right-handed neutrinos and both MD and MR are 3× 3 matrix. Then, the

neutrino mass matrix is given as the 7 × 7 matrix

M =







0 mD MD

mT
D λφa 0

MT
D 0 MR






, (4.11)
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in the (νL, ψn, νR) basis. We take the right-handed Majorana mass scale to be much higher

than the Dirac neutrino mass scale, and assume mα
D ¿ λφa. Then, the effective neutrino

mass matrix is approximately given by

Mν = MDM−1
R MT

D +
mDmT

D

λφa
. (4.12)

The first term in the right hand side of eq. (4.12) is the time-independent neutrino

seesaw mass matrix, which is denoted by M̃ν , and so it depends on the flavor model of

neutrinos. In this case, since the neutrino mass matrix reduces to eq. (4.3) at the limit of

M̃ν → 0, we assume that M̃ν dominates the effective neutrino mass matrix Mν . Then we

can describe generally mass eigenvalues in the first order perturbation as follows [23]:

mνi = m̃νi + ci
M2

i

λφa
, (4.13)

where ci is a coefficient of order 1 depending on the model of families.3 Using this relation

and eq. (4.1), we have the redshift dependence of the acceleron from the stationary condition

eq. (3.7) as

φa '
n̂ν

∑3
i=1 ciM

2
i

(

1 − aT 2

m̃2

νi

)

λkA
, (4.14)

where the first term of the left hand side in eq. (3.7) was expanded by the second term

of the right hand side in eq. (4.13). Thus, the redshift dependence of neutrino masses is

given by

3
∑

i=1

∂mνi

∂z
= −

kA
∑3

i=1 ciM
2
i

∑3
j=1 M2

j

(

3 − 5aT 2

m̃2

νj

)

n̂ν(z + 1)
[

∑3
k=1 M2

k

(

1 − aT 2

m̃2

νk

)]2 . (4.15)

The magnitude of the first term of the left hand side in eq. (3.11) is nearly equal to kA/n̂ν

at the present epoch. In order to realize the positive speed of sound squared, k has to be

smaller than 5.19 × 10−6. When we assume that the magnitude of the second term of the

right hand side in eq. (4.13) is 0.1 percent of the first term, we obtain k = 1.90 × 10−6

which reproduce observed values of neutrino masses. Therefore, the model including the

scalar potential (4.1) and the relation between neutrino masses and the acceleron (4.13) is

favored in the MaVaNs scenario and can act as the dark energy.

4.2 The logarithmic potential

We take the logarithmic scalar potential of the form

V (φa) = B ln

(

φa

µ

)

, (4.16)

B ' 5.68 × 10−14(eV4), (4.17)

where we use values of (4.8) and (4.9) to fix the value of B.

We will consider two cases of the coupling between neutrinos and the acceleron as well

as the case of the small fractional potential.

3The values of ci are given in a specific flavor symmetry as in ref. [23].
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4.2.1 Three left-handed neutrinos and a sterile neutrino

We take Lagrangian in eq. (4.2), and thus, neutrino masses in eq. (4.4). The stationary

condition of eq. (3.7) gives the redshift dependence of the acceleron:

φa '
−B + H(z)

2λan̂νT 2
∑3

l=1(1/M
2
l )

, H(z) ≡

√

√

√

√B2 + 4an̂2
νT

2

3
∑

j=1

(1/M2
j )

3
∑

k=1

M2
k , (4.18)

and thus the redshift dependence of neutrino masses is given by

3
∑

i=1

∂mνi

∂z
= −

4a2n̂2
νT

4
[

∑3
l=1(1/M

2
l )

]2
∑3

i=1 M2
i

(z + 1)[−B + H(z)]2

[

8n̂ν

∑3
l=1 M2

l

H(z)
−

5{−B + H(z)}

2an̂νT 2
∑3

l=1(1/M
2
l )

]

.

(4.19)

Using values of eqs. (4.8), (4.9) and (4.17), the first term of the left hand side in eq. (3.11)

is −O(10−1) (eV), however the second term is O(10−4)(eV) at the present epoch. Thus

the speed of sound squared becomes negative, in other words, one cannot build a stable

MaVaNs model including the form of the neutrino mass like as eq. (4.4).

4.2.2 Three left- and right-handed neutrinos and a sterile neutrino

We take Lagrangian in eq. (4.10), and thus, neutrino masses in eq. (4.13). The redshift

dependence of the acceleron is given as:

φa '
n̂ν

∑3
i=1 ciM

2
i

(

1 − aT 2

m̃2

νi

)

λB
, (4.20)

and thus, the redshift dependence of neutrino masses is given by

3
∑

i=1

∂mνi

∂z
= −

B
∑3

i=1 ciM
2
i

∑3
j=1 M2

j

(

3 − 5aT 2

m̃2

νj

)

n̂ν(z + 1)
[

∑3
k=1 M2

k

(

1 − aT 2

m̃2

νk

)]2 . (4.21)

Using values of eqs. (4.8) and (4.9), we can estimate the redshift dependence of neutrino

masses. Since m̃νi dominate the neutrino mass, we assume m̃νi ∼ mνi. In this case, the

first term of the left hand side in eq. (3.11) is −O(10−3)(eV), however the second term is

O(10−4)(eV). Thus, the speed of sound squared becomes negative as well as the previous

case. We conclude that the speed of sound squared in the neutrino-acceleron fluid becomes

negative when neutrinos are non-relativistic for the logarithmic scalar potential in eq. (4.16)

and neutrino masses like as eqs. (4.4) and (4.13).

5. Summary

We have discussed about the speed of sound squared in the neutrino-acceleron fluid, and

tried to find a stable MaVaNs model in which the fluid is adiabatic. In order to examine c2
s

quantitatively, we have taken two types of the scalar potential for the acceleron. One is the

small fractional power-law potential and another is the logarithmic one. Furthermore, we

– 8 –
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have studied about two types of models which have different couplings between neutrinos

and the accerelon.

In our analysis, models including the logarithmic scalar potential are unstable and

cannot act as the dark energy because the speed of sound squared in the neutrino-acceleron

fluid becomes negative. However, models with the small fractional power-law potential can

avoid this instability. The model including only three left-handed neutrinos and a sterile

neutrino avoids this instability but does not reproduce the observed neutrino masses. On

the other hand, the model including the right-handed neutrinos reproduces the observed

neutrino masses and realizes the positive speed of sound squared. Neutrino masses in

this model have the time-independent component from the seesaw mechanism, which was

assumed to be dominant in the effective neutrino mass. Therefore, it is easy to reconcile

these neutrino masses with observed ones. Due to this time-independent mass, this model

becomes viable.

A. Derivation of the speed of sound

The derivation of the speed of sound squared in eq. (3.10) is presented in this appendix.

The energy density for three generations of neutrinos and antineutrinos is generally

given by

ρν = T 4
3

∑

i=1

F (ξi), ξi ≡
mνi

T
, F (ξi) ≡

1

π2

∫ ∞

0

dyy2
√

y2 + ξ2
i

ey + 1
. (A.1)

As neutrinos become non-relativistic, ξi is much larger than 1. Therefore, the function

F (ξi) is expanded in terms of ξ−1
i as:

F (ξi) =
1

π2

∫ ∞

0

dyy2

ey + 1
ξi

√

(

y

ξi

)2

+ 1

'
1

π2

∫ ∞

0

dyy2

ey + 1
ξi

[

1

2

(

y

ξi

)2

+ 1

]

=
ξi

π2

∫ ∞

0

dyy2

ey + 1
+

1

2π2ξi

∫ ∞

0

dyy4

ey + 1

=
n̂ν

T 3
ξi +

1

2π2ξi

∫ ∞

0

dyy4

ey + 1

=
n̂ν

T 3
ξi + a

n̂ν

T 3

1

ξi
, (A.2)

where

n̂ν ≡
T 3

π2

∫ ∞

0

dyy2

ey + 1
, a ≡

∫ ∞

0
dyy4

ey+1

2
∫ ∞

0
dyy2

ey+1

' 6.47, (A.3)

and thus, we get

ρν =
3

∑

i=1

mνin̂ν +
3

∑

i=1

an̂ν
T

ξi
=

3
∑

i=1

mνin̂ν

(

1 +
a

ξ2
i

)

, (A.4)
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ρDE = ρν + V (φa) =
3

∑

i=1

mνin̂ν

(

1 +
a

ξ2
i

)

+ V (φa), (A.5)

∂ρDE

∂z
=

3
∑

i=1

[(

∂mνi

∂z
n̂ν + mνi

∂n̂ν

∂z

) (

1 +
a

ξ2
i

)

− mνin̂ν
2a

ξ3
i

∂ξi

∂z

]

+
∂V (φa)

∂z
. (A.6)

The stationary condition eq. (2.3) leads to the relation:

∂V (φa)

∂z

∂z

∂
∑3

i=1mνi

= −
∂

∂
∑3

i=1 mνi





3
∑

j=1

mνj n̂ν

(

1 +
a

ξ2
j

)





= −n̂ν −
∂z

∂
∑3

i=1 mνi

∂

∂z





3
∑

j=1

mνjn̂ν
a

ξ2
j



 (A.7)

= −n̂ν −
∂z

∂
∑3

i=1mνi

[

3
∑

j=1

(

∂mνj

∂z
n̂ν

a

ξ2
j

+ mνj
∂n̂ν

∂z

a

ξ2
j

− 2mνj n̂ν
a

ξ3
j

∂ξj

∂z

)]

,

and thus, we have

∂V (φa)

∂z
=

3
∑

i=1

[

∂mνi

∂z
n̂ν − a

(

∂mνi

∂z
n̂ν

1

ξ2
i

+ mνi
∂n̂ν

∂z

1

ξ2
i

− 2mνin̂ν
1

ξ3
i

∂ξi

∂z

)]

. (A.8)

Using eqs. (A.6) and (A.8), the redshift dependence of the dark energy is

∂ρDE

∂z
=

3
∑

i=1

(

∂mνi

∂z
n̂ν + mνi

∂n̂ν

∂z

)(

1 +
a

ξ2
i

)

−

3
∑

i=1

mνin̂ν
2a

ξ3
i

∂ξi

∂z

+

3
∑

i=1

[

∂mνi

∂z
n̂ν − a

(

∂mνi

∂z
n̂ν

1

ξ2
i

+ mνi
∂n̂ν

∂z

1

ξ2
i

− 2mνin̂ν
1

ξ3
i

∂ξi

∂z

)]

=

3
∑

i=1

mνi
∂n̂ν

∂z
. (A.9)

The equation of state parameter w is

w + 1 =
[4 − h(T )]ρν

3ρDE
, (A.10)

where

h(T ) ≡

∑3
i=1 ξi

∂F (ξi)
∂ξi

∑3
j=1 F (ξj)

. (A.11)

Using eq. (A.2),

h(T ) =

∑3
i=1 ξi

(

n̂ν

T 3 − a n̂ν

T 3

1
ξ2

i

)

∑3
j=1

(

n̂ν

T 3 ξj + a n̂ν

T 3

1
ξj

)
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=

∑3
i=1 ξi −

∑3
j=1

a
ξj

∑3
k=1 ξk +

∑3
l=1

a
ξl

=
1 − 1

P

3

i=1
ξi

(

∑3
j=1

a
ξj

)

1 − 1
P

3

k=1
ξk

(

∑3
l=1

a
ξl

)

' 1 −
2

∑3
i=1 ξi





3
∑

j=1

a

ξj



 . (A.12)

Thus, we have

w + 1 =

[

3 + 2
P

3

i=1
ξi

(

∑3
j=1

a
ξj

)](

∑3
k=1 mνkn̂ν +

∑3
l=1 an̂ν

T
ξl

)

3ρDE

=
3
∑3

i=1 mνin̂ν + 3
∑3

i=1 an̂ν
T
ξi

+ 2
P

3

i=1
ξi

(

∑3
j=1

a
ξj

)

∑3
k=1 mνkn̂ν

3ρDE

+

2
P

3

i=1
ξi

(

∑3
j=1

a
ξj

)

∑3
k=1 an̂ν

T
ξk

3ρDE
, (A.13)

where the last term is negligible small because ξi is much larger than 1. Thus we get

ρDE(w + 1) =
3
∑3

i=1 mνin̂ν + 3
∑3

i=1 an̂ν
T
ξi

+ 2T
P

3

i=1
mνi

(

∑3
j=1

a
ξj

)

∑3
k=1 mνkn̂ν

3

=

3
∑

i=1

(

mνin̂ν +
5an̂νT

3ξi

)

. (A.14)

Differentiating eq. (A.14) by the redshift parameter, we have

∂ρDE

∂z
w+

∂ρDE

∂z
+ρDE

∂w

∂z
=

3
∑

i=1

[

∂mνi

∂z
n̂ν + mνi

∂n̂ν

∂z
+

5a

3

(

∂n̂ν

∂z

T

ξi
+

∂T

∂z

n̂ν

ξi
−

n̂νT

ξ2
i

∂ξi

∂z

)]

,

(A.15)

which leads to

∂ρDE

∂z
w + ρDE

∂w

∂z
=

3
∑

i=1

[

∂mνi

∂z
n̂ν + mνi

∂n̂ν

∂z
+

5a

3

(

3n̂ν

z + 1

T

ξi
+ T0

n̂ν

ξi
−

n̂νT

ξ2
i

∂ξi

∂z

)]

−
∂ρDE

∂z

=

3
∑

i=1

[

∂mνi

∂z
n̂ν + mνi

∂n̂ν

∂z
+

5an̂ν

3

(

4T0

ξi
−

T

ξ2
i

∂ξi

∂z

)]

−
∂ρDE

∂z
. (A.16)

Then, using the relation (A.9), we have

∂ρDE

∂z
w + ρDE

∂w

∂z
=

3
∑

i=1

[

∂mνi

∂z
n̂ν + mνi

∂n̂ν

∂z
+

5an̂ν

3

(

4T0

ξi
−

T

ξ2
i

∂ξi

∂z

)]

−

3
∑

i=1

mνi
∂n̂ν

∂z
.

(A.17)
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Since the speed of sound squared in the dark energy is given by

c2
s ≡

∂p

∂ρDE

=
∂(wρDE)

∂ρDE

=

∂ρDE
∂z

w + ρDE
∂w
∂z

∂ρDE
∂z

, (A.18)

using eqs. (A.9) and (A.17), we get finally

c2
s =

∑3
i=1

[

∂mνi

∂z
n̂ν + mνi

∂n̂ν

∂z
+ 5an̂ν

3

(

4T0

ξi
− T

ξ2

i

∂ξi

∂z

)]

−
∑3

i=1 mνi
∂n̂ν

∂z
∑3

i=1 mνi
∂n̂ν

∂z

=

∑3
i=1

∂mνi

∂z
n̂ν

∑3
i=1 mνi

∂n̂ν

∂z

+

5
3an̂ν

∑3
i=1

(

5T0

ξi
− T

ξ2

i

∂mνi

∂z

)

∑3
i=1 mνi

∂n̂ν

∂z

. (A.19)

It is easy to see that if the following relation is satisfied, the speed of sound squared becomes

positive:
3

∑

i=1

∂mνi

∂z

(

1 −
5aT 2

3m2
νi

)

+
25aT 2

0 (z + 1)

3

3
∑

i=1

1

mνi
> 0. (A.20)

References

[1] R. Fardon, A.E. Nelson and N. Weiner, Dark energy from mass varying neutrinos, JCAP 10

(2004) 005 [astro-ph/0309800].

[2] R.D. Peccei, Neutrino models of dark energy, Phys. Rev. D 71 (2005) 023527

[hep-ph/0411137].

[3] M. Kawasaki, H. Murayama and T. Yanagida, Neutrino dark matter with a galactic range

new force, Mod. Phys. Lett. A 7 (1992) 563.

[4] J. Stephenson, G. J., T. Goldman and B.H.J. McKellar, Neutrino clouds, Int. J. Mod. Phys.

A 13 (1998) 2765 [hep-ph/9603392]; MSW-like enhancements without matter, Mod. Phys.

Lett. A 12 (1997) 2391 [hep-ph/9610317].

[5] P. Gu, X. Wang and X. Zhang, Dark energy and neutrino mass limits from baryogenesis,

Phys. Rev. D 68 (2003) 087301 [hep-ph/0307148].

[6] D.B. Kaplan, A.E. Nelson and N. Weiner, Phys. Rev. Lett. 93 (2004) 091801.

[7] V. Barger, D. Marfatia and K. Whisnant, Confronting mass-varying neutrinos with

miniboone, Phys. Rev. D 73 (2006) 013005 [hep-ph/0509163].

[8] P.-H. Gu, X.-J. Bi, B. Feng, B.-L. Young and X. Zhang, Detecting dark energy in long

baseline neutrino oscillations, hep-ph/0512076.

[9] X.-J. Bi, P.-H. Gu, X.-L. Wang and X.-M. Zhang, Thermal leptogenesis in a model with mass

varying neutrinos, Phys. Rev. D 69 (2004) 113007 [hep-ph/0311022].

[10] P.-H. Gu and X.-J. Bi, Leptogenesis with triplet Higgs boson, Phys. Rev. D 70 (2004) 063511

[hep-ph/0405092].

– 12 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0410%2C005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0410%2C005
http://xxx.lanl.gov/abs/astro-ph/0309800
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C023527
http://xxx.lanl.gov/abs/hep-ph/0411137
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA7%2C563
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA13%2C2765
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA13%2C2765
http://xxx.lanl.gov/abs/hep-ph/9603392
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA12%2C2391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA12%2C2391
http://xxx.lanl.gov/abs/hep-ph/9610317
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C087301
http://xxx.lanl.gov/abs/hep-ph/0307148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C091801
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C013005
http://xxx.lanl.gov/abs/hep-ph/0509163
http://xxx.lanl.gov/abs/hep-ph/0512076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C113007
http://xxx.lanl.gov/abs/hep-ph/0311022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C063511
http://xxx.lanl.gov/abs/hep-ph/0405092


J
H
E
P
0
5
(
2
0
0
6
)
0
2
1

[11] P.Q. Hung and H. Päs, Cosmo msw effect for mass varying neutrinos, Mod. Phys. Lett. A 20

(2005) 1209 [astro-ph/0311131].

[12] V. Barger, P. Huber and D. Marfatia, Solar mass-varying neutrino oscillations, Phys. Rev.

Lett. 95 (2005) 211802 [hep-ph/0502196].

[13] M. Cirelli, M.C. Gonzalez-Garcia and C. Pena-Garay, Mass varying neutrinos in the sun,

Nucl. Phys. B 719 (2005) 219 [hep-ph/0503028].

[14] X.-J. Bi, B. Feng, H. Li and X.-m. Zhang, Cosmological evolution of interacting dark energy

models with mass varying neutrinos, Phys. Rev. D 72 (2005) 123523 [hep-ph/0412002].

[15] A.W. Brookfield, C. van de Bruck, D.F. Mota and D. Tocchini-Valentini, Cosmology with

massive neutrinos coupled to dark energy, Phys. Rev. Lett. 96 (2006) 061301

[astro-ph/0503349].

[16] R. Horvat, Mass-varying neutrinos from a variable cosmological constant, JCAP 01 (2006)

015 [astro-ph/0505507];

R. Barbieri, L.J. Hall, S.J. Oliver and A. Strumia, Dark energy and right-handed neutrinos,

Phys. Lett. B 625 (2005) 189 [hep-ph/0505124].

[17] N. Weiner and K. Zurek, New matter effects and BBN constraints for mass varying

neutrinos, hep-ph/0509201.

[18] H. Li, B. Feng, J.-Q. Xia and X. Zhang, Supernova constraints on models of neutrino dark

energy, astro-ph/0509272.

[19] A.W. Brookfield, C. van de Bruck, D.F. Mota and D. Tocchini-Valentini, Cosmology of

mass-varying neutrinos driven by quintessence: theory and observations, astro-ph/0512367.

[20] P.-H. Gu, X.-J. Bi and X.-M. Zhang, Dark energy and neutrino CPT violation,

hep-ph/0511027.

[21] R. Takahashi and M. Tanimoto, Model of mass varying neutrinos in SUSY, Phys. Lett. B

633 (2006) 675 [hep-ph/0507142].

[22] R. Fardon, A.E. Nelson and N. Weiner, Supersymmetric theories of neutrino dark energy,

JHEP 03 (2006) 042 [hep-ph/0507235].

[23] M. Honda, R. Takahashi and M. Tanimoto, Embedding the texture of the neutrino mass

matrix into the mavans scenario, JHEP 01 (2006) 042 [hep-ph/0510018].

[24] N. Afshordi, M. Zaldarriaga and K. Kohri, On the stability of dark energy with mass-varying

neutrinos, Phys. Rev. D 72 (2005) 065024 [astro-ph/0506663].

[25] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological

perturbations. Part 1: classical perturbations. Part 2: quantum theory of perturbations.

Part 3: extensions, Phys. Rept. 215 (1992) 203.

– 13 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA20%2C1209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA20%2C1209
http://xxx.lanl.gov/abs/astro-ph/0311131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C211802
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C211802
http://xxx.lanl.gov/abs/hep-ph/0502196
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB719%2C219
http://xxx.lanl.gov/abs/hep-ph/0503028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C123523
http://xxx.lanl.gov/abs/hep-ph/0412002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C061301
http://xxx.lanl.gov/abs/astro-ph/0503349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C01%2C015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C01%2C015
http://xxx.lanl.gov/abs/astro-ph/0505507
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB625%2C189
http://xxx.lanl.gov/abs/hep-ph/0505124
http://xxx.lanl.gov/abs/hep-ph/0509201
http://xxx.lanl.gov/abs/astro-ph/0509272
http://xxx.lanl.gov/abs/astro-ph/0512367
http://xxx.lanl.gov/abs/hep-ph/0511027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB633%2C675
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB633%2C675
http://xxx.lanl.gov/abs/hep-ph/0507142
http://jhep.sissa.it/stdsearch?paper=03%282006%29042
http://xxx.lanl.gov/abs/hep-ph/0507235
http://jhep.sissa.it/stdsearch?paper=01%282006%29042
http://xxx.lanl.gov/abs/hep-ph/0510018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C065024
http://xxx.lanl.gov/abs/astro-ph/0506663
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C215%2C203

